A Novel PCA-Based Bayes Classifier and Face Analysis

نویسندگان

  • Zhong Jin
  • Franck Davoine
  • Zhen Lou
  • Jing-Yu Yang
چکیده

The classical Bayes classifier plays an important role in the field of pattern recognition. Usually, it is not easy to use a Bayes classifier for pattern recognition problems in high dimensional spaces. This paper proposes a novel PCA-based Bayes classifier for pattern recognition problems in high dimensional spaces. Experiments for face analysis have been performed on CMU facial expression image database. It is shown that the PCA-based Bayes classifier can perform much better than the minimum distance classifier. And, with the PCA-based Bayes classifier, we can obtain a better understanding of data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Fusion for Identity Verification

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation o...

متن کامل

Person Identity Verification Based on Multimodal Face-Gait Fusion

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation o...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Statistical Transformation Techniques for Face Verification Using Faces Rotated in Depth

In the framework of a Bayesian classifier based on mixtures of gaussians, we address the problem of non-frontal face verification (when only a single (frontal) training image is available) by extending each frontal face model with artificially synthesized models for non-frontal views. The synthesis methods are based on several implementations of Maximum Likelihood Linear Regression (MLLR), as w...

متن کامل

Face recognition based on PCA and logistic regression analysis

Face recognition is an important research hotspot. More and more new methods have been proposed in recent years. In this paper, we propose a novel face recognition method which is based on PCA and logistic regression. PCA is one of the most important methods in pattern recognition. Therefore, in our method, PCA is used to extract feature and reduce the dimensions of process data. Afterwards, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006